Tel:+86-825-7880081
A process for hydrotreating substantially liquid hydrocarbon containing feed streams (particularly heavy oils) which also contain compounds of nickel, vanadium and sulfur employing a catalyst composition comprising alumina, at least one compound of titanium and at least one compound of molybdenum is prepared either by the steps of impregnating an alumina support material with an aqueous solution of at least one titanium compound, drying, impregnating the Ti-impregnated material with an aqueous solution of at least one molybdenum compound, drying and calcining; or by the steps of impregnating an alumina support material with an aqueous solution of at least one titanium compound and at least one molybdenum compound, drying and calcining.
We claim:
1. A process for hydrotreating a hydrocarbon-containing feed stream comprising the step of simultaneously contacting a substantially liquid hydrocarbon-containing feed stream, which also contains compounds of nickel, vanadium and sulfur, with a free hydrogen-containing gas and a catalyst composition comprising alumina as support material, at least one compound of titanium, at least one compound of molybdenum and at least one compound of aluminum, under such hydrotreating conditions as to produce a hydrocarbon-containing stream having a reduced level of at least one of nickel, vanadium and sulfur,
wherein said catalyst composition is prepared by a process comprising the steps of:
(A) impregnating a support material consisting essentially of alumina with a solution comprising water, at least one compound titanium and at least one compound of aluminum;
(B) heating the material obtained in step (A) under such conditions as to at least partially dry said material obtained in step (A),
(C) impregnating the at least partially dried material obtained in step (B) with a solution containing water and at least one compound of molybdenum;
(D) heating the material obtained in step (C) at a first temperature so as to at least partially dry said material obtained in step (C);
(E) heating the at least partially dried material obtained in step (D) at a second temperature, which is higher than said first temperature, so as to activate said at least partially dried material obtained in step (D).
2. A process in accordance with claim 1, wherein said hydrocarbon-containing feed stream contains about 3-500 ppmw nickel, about 5-1000 ppmw vanadium and about 0.3-5 weight-% sulfur.
3. A process in accordance with claim 1, wherein said hydrotreating conditions comprise a reaction temperature in the range of from about 250℃ to about 550℃, a reaction pressure in the range of from about 0 to about 5,000 psig, a reaction time in the range of from about 0.05 to about 10 hours, and an amount of added hydrogen gas in the range of from about 100 to about 10,000 standard cubic feed per barrel of hydrocarbon-containing feed stream.
4. A process in accordance with claim 1, wherein said hydrotreating conditions comprise a reaction temperature in the range of from about 350℃ to about 550℃, a reaction pressure in the range of from about 100 to about 2,500 psig, a reaction time in the range of from about 0.4 to about 5 hours, and an amount of added hydrogen gas in the range of from about 1,000 to about 6,000 standard cubic feed per barrel of hydrocarbon-containing feed stream.
5. A process in accordance with claim 1, wherein to said hydrocarbon-containing feed stream has been added at least one decomposable compound of a metal selected from the group consisting of metals belonging to Groups IB, IVB, VB, VIB, VIIB and VIII of the Periodic Table of Elements.
6. A process in accordance with claim 5, wherein the at least one added decomposable metal compound is a molybdenum compound and the added molybdenum content in the hydrocarbon-containing feed stream is about 1-100 ppmw Mo, based on the entire hydrocarbon-containing feed stream.
7. A process in accordance with claim 1, wherein the solution used in step (C) additionally comprises at least one aluminum compound.
8. A process in accordance with claim 1, wherein the solution used in step (A) contains about 0.01-4.0 mol/l Ti and the solution used in step (C) contains about 0.005-2.0 mol/l Mo.
9. A process in accordance with claim 1, wherein the solution used in step (A) contains about 0.02-3.0 mol/l Ti and the solution used in step (C) contains about 0.01-1.0 mol/l Mo.
10. A process in accordance with claim 1, wherein said heating in step (B) is carried out at a temperature in the range of from about 20℃to about 200℃, said first temperature in step (D) is in the range of from about 20℃to about 200℃, and said second temperature in step (E) is in the range of from about 200℃ to about 800℃.
11. A rocess in accordance with claim 1 wherein the process for preparing said catalyst composition comprises the additional step of (F) contacting the calcined material obtained in step (E) with at least one suitable sulfur compound under such conditions as to at least partially convert molybdenum compounds contained in said calcined material to molybdenum sulfide.
12. A process in accordance with claim 1 wherein said catalyst composition contains from about 0.1 to about 10 weight-% Ti and from about 0.1 to about 10 weight-% Mo, both based on the calcined catalyst composition obtained in step (E), and has a surface area in the range of from about 20 to about 350 m.sup.2 /g.
13. A process in accordance with claim 1 wherein said catalyst composition contains from about 0.5 to about 5 weight-% Ti and from about 0.3 to about 3 weight-% Mo, both based on the calcined catalyst composition obtained in step (E), and has a surface area in the range of from about 100 to about 250 m.sup.2 /g.
14. A process for hydrotreating a hydrocarbon-containing feed stream comprising the step of simultaneously contacting a substantially liquid hydrocarbon-containing feed stream, which also contains compounds of nickel, vanadium and sulfur, with a free hydrogen-containing gas and a catalyst composition comprising alumina, at least one compound of titanium and at least one compound molybdenum, under such hydrotreating conditions as to produce a hydrocarbon-containing stream having a reduced level of at least one of nickel, vanadium and sulfur, wherein said catalyst composition is prepared by a process comprising the steps of:
(I) impregnating a support material consisting essentially of alumina with an aqueous solution containing at least one compound of titanium and at least one compound of molybdenum; (II) heating the material obtained in step (I) at a first temperature so as to at least partially dry said material obtained in step (I); and (III) heating the at least partially dried material obtained in step (II) at a second temperature, which is higher than said first temperature, so as to activate said at least partially dried material.
15. A process in accordance with claim 14 wherein said hydrocarbon-containing feed stream contains about 3-500 ppmw nickel, about 5-1,000 ppmw vanadium and about 0.3-5 weight-% sulfur.
16. A process in accordance with claim 14 wherein said hydrotreating conditions comprise a reaction temperature in the range of from about 250℃ to about 550℃, a reaction pressure in the range of from about 0 to about 5,000 psig, a reaction time in the range of from about 0.05 to about 10 hours, and an amount of added hydrogen gas in the range of from about 100 to about 10,000 standard cubic feed per barrel of hydrocarbon-containing feed stream.
17. A process in accordance with claim 14 wherein said hydrotreating conditions comprise a reaction temperature in the range of from about 350℃ to about 450℃, a reaction pressure in the range of from about 100 to about 2,500 psig, a reaction time in the range of from about 0.04 to about 5 hours, and an amount of added hydrogen gas in the range of from about 1,000 to about 6,000 standard cubic feed per barrel of hydrocarbon-containing feed stream.
18. A process in accordance with claim 14 wherein to said hydrocarbon-containing feed stream has been added at least one decomposable compound of a metal selected from the group consisting of metals belonging to Groups IB, IVB, VB, VIB, VIIB and VIII of the Periodic Table of Elements.
19. A process in accordance with claim 18 wherein the at least one added decomposable metal compound is a molybdenum compound and the added molybdenum content in the hydrocarbon containing feed stream is about 1-100 ppmw Mo, based on the entire hydrocarbon-containing feed stream.
20. A process in accordance with claim 14 wherein the solution used in step (I) additionally comprises at least one aluminum compound.
21. A process in accordance with claim 14 wherein the solution used in step (I) contains about 0.01-4.0 mol/l Ti and about 0.005-2.0 mol/l Mo.
22. A process in accordance with claim 13 wherein the solution used in step (I) contains about 0.02-3.0 mol/l Ti and about 0.01-1.0 mole/l Mo.
23. A process in accordance with claim 14 wherein said first temperature in step (II) is in the range of from about 20℃ to about 200℃ and said second temperature in step (III) is in the range of from about 200.degree. to about 800.degree. C.
24. A process in accordance with claim 14 wherein the process for preparing said catalyst composition comprises the additional step of
(IV) contacting the calcined material obtained in step (III) with at least one suitable sulfur compound under such conditions as to at least partially convert molybdenum compounds contained in said calcined material to molybdenum sulfide.
25. A process in accordance with claim 14 wherein said catalyst composition contains from about 0.1 to about 10 weight-% Ti and from about 0.1 to about 10 weight-% Mo, both based on the calcined catalyst composition obtained in step (III), and has a surface area in the range of from about 20 to about 350 m.sup.2 /g.
26. A process in accordance with claim 14 wherein said catalyst composition contains from about 0.5 to about 5 weight-% Ti and from about 0.3 to about 3 weight-% Mo, both based on the calcined catalyst composition obtained in step (III), and has a surface area in the range of from about 100 to about 250 m.sup.2 /g.
27. A process in accordance with claim 11 wherein said at least one suitable sulfur compound is selected from the group consisting of solution of mercaptans, solution of organic sulfides and gaseous mixtures of hydrogen and hydrogen sulfide.
28. A process in accordance with claim 24 wherein said at least one suitable sulfur compound is selected from the group consisting of solution of mercaptans, solution of organic sulfides and gaseous mixtures of hydrogen and hydrogen sulfide.
Scan the qrcode to reading this article on your phone